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Abstract
Single-species reaction–diffusion systems on a one-dimensional lattice are
considered, in which more than two neighbouring sites interact. Constraints
on the interaction rates are obtained, that guarantee the closedness of the
time evolution equation for En(t), the probability that n consecutive sites are
empty at time t. The general method of solving the time evolution equation is
discussed. As an example, a system with next-nearest-neighbour interaction is
studied.

PACS numbers: 05.40.−a, 02.50.Ga

1. Introduction

In contrast to equilibrium systems, which are best analysed using standard equilibrium
statistical mechanics, there is no general approach to study systems far from equilibrium.
People are motivated to study non-equilibrium systems in one dimension, since these are
in principle easier. Different methods have been used to study stochastic models in one
dimension, including analytical and asymptotic methods, mean-field methods, and large-scale
numerical methods. Some models solved using these methods are studied for example, in
[1–11].

There is no universal meaning for the term exactly solvable. For example, in [12–14],
solvability means that the evolution equation of n-point functions contains only n- or less-point
functions. In [15, 16], solvability means that the S-matrix of the N-particle system is factorized
into products of two-particle S-matrices. This means that the S-matrices should satisfy the
Yang–Baxter equation. Another meaning of integrability is that the time evolution equation
for En(t), the probability that n consecutive sites are empty at time t, is closed, that is it can
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be expressed in terms of other Em(t). This method of solving the integrable models is called
the empty interval method (EIM).

The empty interval method has been used to analyse the one-dimensional dynamics of
diffusion-limited coalescence [17–20]. Using this method, the functions En(t) have been
calculated. For the cases of finite reaction rates, some approximate solutions have been
obtained. EIM has also been generalized to study the kinetics of the q-state one-dimensional
Potts model in the zero-temperature limit [21].

In [22], all one-dimensional reaction–diffusion models with nearest-neighbour
interactions, exactly solvable through EIM, have been studied. In [23], EIM has also been used
to study a specific model with next-nearest-neighbour interaction. In [24], the conventional
EIM has been extended to a more generalized form. Using this extended version, a model not
solvable by conventional EIM has been studied.

There are few exact results on systems with more-than-two-site interactions, even fewer
than exact results for two-site interactions. It seems that reactions in nature are dominated
by two-body interactions. There are, however, more-than-two-body interactions in nature,
for which a more-than-two-site interaction may be a better approximation than a two-site
interaction. Examples are three-body interactions in nuclear physics, and some reactions
catalysed by inhomogeneous catalysts.

In [23], a single-species system has been studied, in which diffusion, coagulation, and the
three-site production A∅A → AAA is present, and the rates of diffusion and coagulation are
the same. An exact solution has been obtained, from which it is seen that the system exhibits
no phase transition. In [25], the same model, but with different coagulation and diffusion rates,
has been studied. For this latter system, no exact result has been found. Using the cluster mean
field approximation, and Monte Carlo simulations, it has been shown that the system exhibits
a phase transition. In [14], systems with more-than-two-site interactions are considered, in
which the evolution equation for the one-point function is closed. A classification for these
systems is obtained. In the present paper, we consider systems with more-than-two-site
interactions, for which a class of n-point functions can be exactly obtained.

The scheme of the present paper is as follows. We consider the most general systems
with k-site interactions. Some constraints are imposed on the interaction rates, so that the
time evolution equation for En(t) is closed. The general method of solving the time evolution
equation is also discussed. Finally, as an example, a system with next-nearest-neighbour
interactions has been considered in more detail.

2. Models solvable through the empty interval method

Consider a general one-species reaction–diffusion model on a one-dimensional periodic lattice
with L + 1 sites, with a k-neighbouring-site interaction. We want to find criteria on the
interaction rates, that guarantee the solvability of the system via EIM, that is, the closedness
of the evolution equation for the probability that n consecutive sites are empty, En.

Suppose that the initial condition of the system is translationally invariant. Any
configuration of k neighbouring sites is denoted by a = (a1, a2, . . . , ak), where ai = ◦ or •.
◦ (•) is used to denote an empty (occupied) site. The rate of transition from a configuration
a to b is denoted by λb

a . Similar to [22], the interactions with k empty sites as initial or final
configuration are not considered here. In other words for any a,

λa
0 = λ0

a = 0. (1)

Excluding these interactions from the 2k(2k − 1) possible interactions, (2k − 1)(2k − 2)

interactions remain to be considered. We want to impose restrictions on λb
a in such a way that
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the evolution equation for En(t) is closed. As we will see, the form of evolution equation
generally will be different for n � k − 1 and n < k − 1, and also will be different for
n + k > L + 2 and n + k � L + 2. So we will treat each case separately.

2.1. The cases n � k − 1 and n + k � L + 2

To obtain the evolution equation for En(t), one should first recognize the source and sink
terms. There are two cases. In the first case, the intersection of the empty block and the
interacting block is on the left-hand side of the empty block. In the other case, this intersection
is on the right-hand side of the empty block. For the first case, the source terms come from

a′
1 · · · a′

l

n︷ ︸︸ ︷
c1 · · · ck−l ◦ · · · ◦ → b1 · · · bl

n︷ ︸︸ ︷◦ · · · ◦ (2)

where c �= 0. Here 0 stands for a block of adjacent empty sites. One also has l � k − 1.
λ0

a = 0 leads to l � 1. So the left source for En is

SL =
k−1∑
l=1

∑
a′,b
c �=0

λb0
a′cP(a′c

n−k+l︷ ︸︸ ︷◦ · · · ◦). (3)

Now consider the expansion

∑
a′

c �=0

λf
a′,c =

k−1∑
l′=l

∑
a

λf
a•0 (4)

in which a is an l′-dimensional vector and 0 is (k − l′ − 1)-dimensional. So,

SL =
k−1∑
l=1

k−1∑
l′=l

∑
a,b

λb0
a•0P(a •

n+l−l′−1︷ ︸︸ ︷◦ · · · ◦ ). (5)

If

�L
ll′ :=

∑
b

λ
b1···bl0
a1···al′ •0 1 � l � k − 1 l � l′ � k − 1 (6)

is independent of a, then one can sum up P(a •
n︷ ︸︸ ︷◦ · · · ◦) on the index a. Then

SL =
k−1∑
l=1

k−1∑
l′=l

�L
ll′P(•

n+l−l′−1︷ ︸︸ ︷◦ · · · ◦ ) =
k−1∑
l=1

k−1∑
l′=l

�L
ll′(En+l−l′−1 − En+l−l′). (7)

One can do similar calculations for the case that the intersection of the interaction block
and the empty block is on the right-hand side of the empty block. Defining

�R
ll′ :=

∑
b

λ
0b1···bl

0•a1···al′
1 � l � k − 1 l � l′ � k − 1 (8)

and assuming that it is independent of a, the source term for this case is

SR =
k−1∑
l=1

k−1∑
l′=l

�R
ll′P(

n+l−l′−1︷ ︸︸ ︷◦ · · · ◦ •). (9)

Putting these together, the source term is

S =
k−1∑
l=1

k−1∑
l′=l

(
�L

ll′ + �R
ll′

)
(En+l−l′−1 − En+l−l′). (10)
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Now, let us consider the sink terms. Again we will treat interactions of left- and right-hand
sides separately. First consider the left ones. The interactions which contribute to sink terms
come from

a′
1 · · · a′

l

n︷ ︸︸ ︷◦ · · · ◦ → b1 · · · blc1 · · · ck−l

n−k+l︷ ︸︸ ︷◦ · · · ◦ (11)

where c �= 0. The sink term from the left interactions is

RL = −
k−1∑
l=1

∑
a′,b
c �=0

λbc
a′0P(a′

n︷ ︸︸ ︷◦ · · · ◦). (12)

λa
0 = 0 leads to l � 1. One also has l � k − 1. λb

a is the transition rate, so it is defined only
for a �= b. But one can extend this definition and define the diagonal terms in such a way that∑

b,c

λbc
ad = 0. (13)

Using this, one arrives at the following equation for RL

RL =
k−1∑
l=1

∑
a′,b

λb0
a′0P(a′

n︷ ︸︸ ︷◦ · · · ◦). (14)

Noting that
∑

a′ λ
f
a′

1···a′
l0 = ∑l−1

l′=0

∑
a λf

a1 ···al′ •0, the above equation is reduced to

RL =
k−1∑
l=1

l−1∑
l′=0

�L
ll′P(•

n+l−l′−1︷ ︸︸ ︷◦ · · · ◦ ) (15)

where

�L
ll′ :=

∑
b

λ
b1···bl0
a1···al′ •0 1 � l � k − 1 0 � l′ � l − 1 (16)

and it is assumed that �L
ll′ is independent of a.

It is seen that the conditions we have obtained for the source and sink terms for the left
interactions, equations (6) and (16), are similar, except for the range of l′. Performing similar
calculations for the right interactions, all the conditions coming from the source and sink terms
can be summarized as this. The following quantities should be independent of a:

�L
ll′ :=

∑
b

λ
b1···bl0
a1···al′ •0 1 � l � k − 1 0 � l′ � k − 1 (17)

�R
ll′ :=

∑
b

λ
0b1···bl

0•a1···al′
1 � l � k − 1 0 � l′ � k − 1. (18)

Defining �ll′ := �L
ll′ + �R

ll′ , the time evolution equation of En(t), for n � k − 1 and
n + k � L + 2, takes the following form:

dEn(t)

dt
=

k−1∑
l=1

k−1∑
l′=0

�ll′(En+l−l′−1 − En+l−l′). (19)

Note that in this equation, E0 is defined through

E0 := 1. (20)
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2.2. The cases n < k − 1 and n + k � L + 2

Now, we want to derive the time evolution equation of En(t) when n < k − 1. Two cases
may occur. The first one is that the n adjacent sites which we are focused on are among the
k interacting sites, and in the second case a block of these sites is outside those k sites. The
result for the second case is similar to that of the preceding subsection, n � k − 1. For that
case, we only quote the results. However, we study the first case in more detail.

The source terms come from

a1
′ · · · ap

′c1 . . . cne1
′ · · · eq

′ → b1 · · · bp

n︷ ︸︸ ︷◦ ◦ · · · ◦ d1 · · · dq (21)

where c �= 0, p + q + n = k, and p, q � 1. Then the source term is

S =
∑

p,q=1
p+q=k−n

∑
a′,e′,b,d

c �=0

λb0d
a′ce′P(a′ce′). (22)

Similar to the previous cases, one can rearrange the sum of the rates in the following form:

∑
a′,e′
c �=0

λf
a′ce′ =

n−1∑
n′=0

q−1∑
n′′=0

∑
a,e

λf
a•◦ · · · ◦︸ ︷︷ ︸

n′+n′′

•e +
n−1∑
n′=0

∑
a

λf
a•0 (23)

In the above equation, a is a (p + n − n′ − 1)-dimensional vector and e is a (q − n′′ − 1)-
dimensional vector. Arranging all these together, one arrives at the following equation for the
source term:

S =
∑

p,q=1
p+q=k−n

n−1∑
n′=0

[
q−1∑
n′′=0

∑
a,e,b,d

λb0d
a•0•eP(a • 0 • e) +

∑
a,b,d

λb0d
a•0 P(a • 0)

]
. (24)

Defining

�pq,p′q ′ :=
∑
b,d

λ
b1 ···bp0d1···dq

a1 ···ap′ •0•e1···eq′ (25)

and

�L
pq,p′ :=

∑
b,d

λ
b1···bp0d1···dq

a1···ap′ •0 (26)

where p � p′ � p + n − 1, 0 � q ′ � q − 1, p + q = k − n, and p, q � 1. Assuming that
�pq,p′′ is independent of a and e and �L

pq,p′ is independent of a, one can sum up the terms
in (24):

S =
∑

p,q=1
p+q=k−n

n−1∑
n′=0

[
q−1∑
n′′=0

�pq,p′q ′(En′+n′′ + En′+n′′+2 − 2En′+n′′+1) + �L
pq,p′(Eq+n′ − Eq+n′+1)

]
.

(27)

The independence of �pq,p′q ′ with respect to a and e, and �L
pq,p′ with respect to a is sufficient

to guarantee that the above source term is expressible in terms of En, but is not necessary. For
example, in (22) one can decompose the blocks c and a′ instead of c and e′, which leads to
another set of sufficient conditions on the rates.

Now, let us consider the sink terms for n < k − 1:

a′
1 · · · a′

p

n︷ ︸︸ ︷◦ · · · ◦ e′
1 · · · e′

q → b1 · · · bpc1 · · · cnd1 · · · dq. (28)
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The above interaction produces a sink term:

R = −
∑

p,q=1
p+q=k−n

∑
a′,e′,b,d

c �=0

λbcd
a′0e′P(a′0e′) =

∑
p,q=1

p+q=k−n

∑
a′,e′,b,d

λb0d
a′0e′P(a′0e′) (29)

where (13) has been used in the second equality. Expanding
∑

a′,e′ λ
b0d
a′0e′ , R can be written in

the form

R =
∑

p,q=1
p+q=k−n

[
q−1∑
q ′=0

p−1∑
p′=0

�pq,p′q ′(Ek−p′−q ′−2 + Ek−p′−q ′ − 2Ek−p′−q ′−1)

+
q−1∑
q ′=0

�R
pq,q ′(Ek−q ′−1 − Ek−q ′) +

p−1∑
p′=0

�L
pq,p′(Ek−p′−1 − Ek−p′)

]
(30)

where we have used definitions (25) and (26) for �pq,p′q ′ and �L
pq,p′ but with an extension of

the range of p′ to 0 � p′ � p + n − 1. It has also been assumed that �pq,p′q ′ is independent
of a and e, and �L

pq,p′ is independent of e. �R
pq,q ′ is defined through

�R
pq,q ′ :=

∑
b,d

λ
b1···bp0d1···dq

0•e1···eq′ p + q = k − n 0 � q ′ � q − 1 (31)

and it is assumed that it is independent of e. Considering (27), (30), and the source- and
sink-terms corresponding to the previous subsection, and noting that in these latter terms, one
should replace 1 � l � k − 1 on the right-hand side of (19) with k − n � l � k − 1, one
arrives (for n < k − 1 and n + k � L + 2) at

dEn(t)

dt
=

k−1∑
l=k−n

k−1∑
l′=0

�ll′(En+l−l′−1 − En+l−l′) +
∑

p,q=1
p+q=k−n

{
p−1∑
n′=0

[
q−1∑
n′′=0

�pq,(p+n−n′−1)(q−n′′−1)

× (En′+n′′ + En′+n′′+2 − 2En′+n′′+1) + �L
pq,p+n−n′−1(Eq+n′ − Eq+n′+1)

]

+
p−1∑
n′=0

q−1∑
n′′=0

�pq,n′n′′(Ek−n′−n′′−2 + Ek−n′−n′′ − 2Ek−n′−n′′−1)

+
p−1∑
n′=0

�L
pq,n′(Ek−n′−1 − Ek−n′) +

q−1∑
n′′=0

�R
pq,n′′(Ek−n′′−1 − Ek−n′′)

}
. (32)

2.3. The case n + k > L + 2

The last case to be considered is the case with n+ k > L+ 2. Normally, the case of large L and
finite k is of interest, in which one also has n > k. We assumed periodic boundary condition
for the system. Then the intersection of the k interacting sites and the block of n sites may
consist of two disconnected parts, of lengths l and l′. So, one has, in addition to the source
terms similar to those of subsection 2.1, a source term coming from

a′
1 · · · a′

l ◦ · · · ◦ b′
1 · · · b′

l′︸ ︷︷ ︸
n

c′
1 · · · c′

k−l−l′ → 0d1 · · · dk−l−l′ . (33)

This leads to a source term

S =
∑
l,l′=1

l+l′=n+k−L−1

∑
a′,b′,c′,d

a′ �=0 or b′ �=0

λ0d0
b′c′a′P(a′

n−l−l′︷ ︸︸ ︷◦ · · · ◦ b′c′). (34)
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Expanding
∑

a′,b′,c′
a′ �=0 or b′ �=0

λ0d0
b′c′a′ , it is seen that if the quantities

�′
ll′,pq :=

∑
d

λ

l′︷ ︸︸ ︷◦ · · · ◦d

l︷ ︸︸ ︷◦ · · · ◦◦ · · · ◦︸ ︷︷ ︸
q

•c•◦ · · · ◦︸ ︷︷ ︸
p

0 � p � l − 1 0 � q � l′ − 1

�′L
ll′,p :=

∑
d

λ

l′︷ ︸︸ ︷◦ · · · ◦d

l︷ ︸︸ ︷◦ · · · ◦◦ · · · ◦︸ ︷︷ ︸
l′

c•◦ · · · ◦︸ ︷︷ ︸
p

0 � p � l − 1 (35)

�′R
ll′,q :=

∑
d

λ

l′︷ ︸︸ ︷◦ · · · ◦d

l︷ ︸︸ ︷◦ · · · ◦◦ · · · ◦︸ ︷︷ ︸
q

•c◦ · · · ◦︸ ︷︷ ︸
l

0 � q � l′ − 1

are independent of c, then the source term corresponding to (33) is

S =
∑
l,l′=1

l+l′=n+k−L−1

{
l−1∑
p=0

l′−1∑
q=0

�′
ll′,pq(−2En+p+q−l−l′+1 + En+p+q−l−l′ + En+p+q−l−l′+2)

+
l−1∑
p=0

�′L
ll′,p(En+p−l − En+p−l+1) +

l′−1∑
q=0

�′R
ll′,q(En+q−l′ − En+q−l′+1)

}
. (36)

Now let us consider the sink terms. Again there are terms similar to those of subsection 2.1,
and a new sink term, which is

R = −
∑
l,l′=1

l+l′=n+k−L−1

∑
a′,b,c,d

b�=0 or d�=0

λ
b1···bl′ cd1···dl◦ · · · ◦︸ ︷︷ ︸

l′

a′ ◦ · · · ◦︸ ︷︷ ︸
l

P (a′
n︷ ︸︸ ︷◦ · · · ◦). (37)

Using (13), and some appropriate expansion, we find that if

�′L
ll′,p :=

∑
c

λ

l′︷ ︸︸ ︷◦ · · · ◦ c

l︷ ︸︸ ︷◦ · · · ◦◦ · · · ◦︸ ︷︷ ︸
l′

a•◦ · · · ◦︸ ︷︷ ︸
p

l � p � k − l′ − 1 (38)

is independent of a, then the above sink term becomes

R =
∑
l,l′=1

l+l′=n+k−L−1

k−l′−1∑
p=l

�′L
ll′,p(En+p−l − En+p−l+1). (39)

Note that here too, this condition on �′L is a sufficient condition for the EIM-solvability
of the model. Using (36), (39), and the source- and sink-terms corresponding to those of
subsection 2.1, one arrives at

dEn

dt
=

L−n−1∑
l=1

k−1∑
l′=0

�ll′(En+l−l′−1 − En+l−l′)

+
∑
l,l′=1

l+l′=n+k−L−1

[
l−1∑
p=0

l′−1∑
q=0

�′
ll′,pq(EL−k+p+q+1 + EL−k+p+q+3 − 2EL−k+p+q+2)

+
k−l′−1∑
p=0

�′L
ll′,p(En+p−l − En+p+1−l) +

l′−1∑
q=0

�′R
ll′,q(En+q−l′ − En+q+1−l′)

]
(40)
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for n + k > L + 2 (and n > k). Note that the summation limits in the terms corresponding to
the source and sink terms coming from the processes investigated in subsection 2.1 have been
properly modified.

3. General method of the solution

In the previous section, the evolution equations of En were obtained, equations (19), (32) and
(40). Investigating (32) and (40), one can see that these equations can be rewritten in the
general form of (19), provided one defines En for n < 0, and n > L + 1 properly. Doing this,
one arrives at

dEn(t)

dt
=

k−1∑
l=1

k−1∑
l′=0

�ll′(En+l−l′−1 − En+l−l′) (41)

for any n, with the following constraints (which are actually definitions):

k−1∑
s=r

Mrs(Es − Es+1) = 0 −k + 2 � r � −1 (42)

and
r∑

s=L+2−k

Nrs(Es−1 − Es) = 0 L + 2 � r � L + k − 1. (43)

In addition to these, there are two other boundary conditions

E0 = 1 (44)

and

EL+1 = 0. (45)

This last condition comes from the fact that if the lattice is initially nonempty, it will never
become empty (as is seen from (1)). So, excluding the empty lattice (which remains empty)
there will always be at least one particle on the lattice. Equations (42)–(45) are 2k−2 boundary
conditions for the difference equation (41), which is of the same order 2k − 2. To solve these
equations, first consider the stationary solution. This solution

(
EP

n

)
satisfies

k−1∑
l=1

k−1∑
l′=0

�ll′
(
EP

n+l−l′−1 − EP
n+l−l′

) = 0 (46)

with the same boundary conditions (42)–(45). The solution to (46) is

EP
n =

2k−2∑
p=1

αpzn
p (47)

where zp are the solutions of

k−1∑
l=1

k−1∑
l′=0

�ll′(z
l−l′−1 − zl−l′) = 0. (48)

This equation has 2k − 2 roots, one of them is 1. The coefficients αp can be determined using
constraints (42)–(45). The full solution is of the form

En(t) =: EP
n + Fn(t) (49)
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where Fn(t) satisfies an equation similar to (41) but with homogeneous boundary conditions,
that is equations (42), (43) and (45) hold for Fn, but (44) is substituted with F0 = 0. To solve
the resulting equations, one writes Fn as

Fn(t) =
∑

ε

eεtFε,n (50)

where Fε,n satisfies

εFε,n =
k−1∑
l=1

k−1∑
l′=0

�ll′(Fε,n+l−l′−1 − Fε,n+l−l′ ) (51)

with boundary conditions

k−1∑
s=r

Mrs(Fε,s − Fε,s+1) = 0 −k + 2 � r � −1

r∑
s=L+2−k

Nrs(Fε,s−1 − Fε,s) = 0 L + 2 � r � L + k − 1 (52)

Fε,0 = 0

Fε,L+1 = 0.

Fε,n can be written as

Fε,n =
2k−2∑
p=1

βε,pzn
ε,p (53)

where zε,p should satisfy

k−1∑
l=1

k−1∑
l′=0

�ll′(z
l−l′−1 − zl−l′) = ε. (54)

This equation has 2k−2 roots. The coefficients βε,p can be determined using constraints (52).
The condition that there exists a nonzero solution for βε,p is that the determinant of the matrix
of coefficients is zero. This is a condition for ε. So, in principle, one can solve this equation
to obtain the solutions for ε, and then the corresponding solution for zε,p. One can then obtain
βε,p, and Fn(t) is obtained using (53) and (50).

4. A model with three-site interaction

As an example, consider a model with three-site (next-nearest-neighbour) interaction.
Denoting the eight possible three-state configurations as

0 := (◦ ◦ ◦) 1 := (◦ ◦ •) 2 := (◦ • ◦) 3 := (◦ • •)
(55)

4 := (• ◦ ◦) 5 := (• ◦ •) 6 := (• • ◦) 7 := (• • •)
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and the transition rate from the state i to the state j by λ
j

i , one can write the conditions for the
solvability of the system through the empty-interval method as

λ4
6 = λ4

2

λ1
3 = λ1

2

λ4
7 = λ4

5 = λ4
3 = λ4

1

λ1
7 = λ1

6 = λ1
5 = λ1

4

λ1
2 + λ3

2 + λ5
2 + λ7

2 = λ1
6 + λ3

6 + λ5
6 + λ7

6

λ7
3 + λ6

3 + λ5
3 + λ4

3 = λ7
2 + λ6

2 + λ5
2 + λ4

2

λ2
1 + λ6

1 = λ2
3 + λ6

3 = λ2
5 + λ6

5 = λ2
7 + λ6

7

λ3
7 + λ2

7 = λ3
6 + λ2

6 = λ3
5 + λ2

5 = λ3
4 + λ2

4

λ5
7 + λ1

7 = λ5
3 + λ1

3

λ5
6 + λ1

6 = λ5
2 + λ1

2

λ2
7 = λ2

5

λ2
3 = λ2

1

λ2
6 = λ2

4.

(56)

For example, independence of �L
11 with respect to a gives λ4

6 = λ4
2. One of course has also

λi
0 = λ0

i = 0. (57)

This is nothing but (1). Using (19) for 1 = k − 2 < n < L − k + 3 = L, we have

dEn(t)

dt
=

2∑
l=1

2∑
l′=0

�ll′(En+l−l′−1 − En+l−l′) 1 < n < L. (58)

The time-evolution equations for E1 and EL come from (32) and (40), respectively:

dE1(t)

dt
=

2∑
l′=0

�2l′(E2−l′ − E3−l′) + �11,10(E0 + E2 − 2E1) + �L
11,1(E1 − E2)

+ �11,00(E1 + E3 − 2E2) + �L
11,0(E2 − E3) + �R

11,0(E2 − E3) (59)

and

dEL(t)

dt
=

2∑
l′=0

�1l′(EL−l′ − EL+1−l′) + �′
11,00(EL−2 + EL − 2EL−1) + �′L

11,0(EL−1 − EL)

+ �′L
11,1(EL − EL+1) + �′R

11,0(EL−1 − EL). (60)

These two equations can be rewritten in the general form of (58), provided one adds the
boundary conditions corresponding to (42) and (43). These are in fact definitions of E−1 and
EL+2:

2∑
l′=0

�1l′(E1−l′ − E2−l′) = �11,10(E0 + E2 − 2E1) + �L
11,1(E1 − E2)

+ �11,00(E1 + E3 − 2E2) + �L
11,0(E2 − E3) + �R

11,0(E2 − E3) (61)

and
2∑

l′=0

�2l′(EL+1−l′ − EL+2−l′) = �′
11,00(EL−2 + EL − 2EL−1) + �′L

11,0(EL−1 − EL)

+ �′L
11,1(EL − EL+1) + �′R

11,0(EL−1 − EL). (62)
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Equations (58), (61) and (62) can be solved using the general method of the previous section.
Now consider a special case

λ
j

7 = λ4
6 = 0. (63)

Conditions (56), and the nonnegativity of the rates, lead to

λ5
2 = λ5

6 λ7
3 = λ5

2 + λ6
2 + λ7

2 λ7
6 = λ7

2 + λ3
2 (64)

and that all other λ
j

i are equal to zero. Equation (58) is then reduced to

Ėn = AEn+2 + BEn+1 − (A + B)En 1 < n < L (65)

where

A := λ5
1 + λ7

1 + λ5
4 + λ7

4 B := λ3
1 + λ7

3 + λ6
4 + λ5

6 + λ7
6. (66)

Equation (59) becomes

Ė1 = A′E3 + B ′E2 − (A′ + B ′)E1 (67)

where

A′ := λ3
1 + 2λ5

1 + 2λ7
1 + λ5

4 + λ6
4 + 2λ7

4 − λ7
5

B ′ := −λ3
1 − λ5

1 − 2λ7
1 + λ7

3 − λ5
4 − λ6

4 − 2λ7
4 + 2λ7

5 + λ7
6

(68)

and equation (60) becomes

ĖL = B ′′(EL+1 − EL) (69)

where

B ′′ := λ3
1 + λ5

1 + λ7
1 + λ3

2 + λ7
3 + λ5

4 + λ6
4 + λ7

4. (70)

This is in fact a degenerate example of the general case considered in the previous section.
Note that En = 0 (1 � n � L + 1) is obviously a solution. This is expected, since the full
lattice does not evolve, as λ

j

7 = 0. Noting that EL+1 = 0, one can solve (69) to obtain EL.
This is found to be

EL(t) = αL e−B ′′t . (71)

Using this, one can solve the equation for EL−1, to see that it contains two exponentials,
exp(−B ′′t) and exp[−(A + B)t]. This is provided B ′′ �= A + B. (Note that in general
B ′′ � A + B. Equality holds iff λ5

2 = λ7
2 = 0.) Let us assume B ′′ � A + B and proceed. It is

not difficult to see that in other En there are also terms like t l exp[−(A + B)t]. One can write

En(t) = αn e−B ′′t +
L−n−1∑

l=0

βn,lt
l e−(A+B)t 1 < n � L + 1 (72)

where

αL+1 = βL+1,l = 0. (73)

Putting this in (65), one arrives at

Aαn+2 + Bαn+1 + (B ′′ − A − B)αn = 0 (74)

and

(l + 1)βn,l+1 = Aβn+2,l + Bβn+1,l . (75)

The solution to (74) is

αn = αL

ξL+1−n
1 − ξL+1−n

2

ξ1 − ξ2
(76)
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where ξi are the roots of the equation

(A + B − B ′′)ξ2 − Bξ − A = 0 (77)

and αL is arbitrary. The solution to (75) is

βn,l =
l∑

s=0

Bl−s

(l − s)!

As

s!
γn+l+s (78)

where γm are arbitrary constants if 1 < m < L, and zero otherwise.
So far, all En except E1 have been obtained. Using (67), one can also obtain E1. It is seen

that E1 contains similar terms and a new exponential term exp[−(A′ + B ′)t]. So, in general
there are only three time constants in the system (as long as only the empty intervals are
concerned). It may occur that two of these time constants, or all of them, are equal. This does
not change the general behaviour of the system. Only the degrees of the polynomials multiplied
in the exponentials are changed, and the corresponding coefficients can be calculated similarly.

5. Concluding remarks

Single-species one-dimensional reaction–diffusion systems with k-site interactions were
considered, and sufficient constraints needed so that the system be solvable, through the empty-
interval method, were obtained. The constraints are that some specific linear combinations
of the transition rates should vanish. The general method of obtaining the solutions was
discussed, and the case k = 3 was studied in detail.

To see the connection between our results and some other works on three-site interactions,
two specific examples are considered. In [23], a system with the following interactions is
studied, and solved through the empty interval method,

A∅ ↔ ∅A with rate d

AA → A∅ with rate d

AA → ∅A with rate d

A∅A → AAA with rate 2dλ.

(79)

This set of reactions can be written in terms of three-site interactions, the Hamiltonian of
which is the following:

H = d

2




−4 0 4λ 0 0 0 0 0
1 −3 1 0 0 0 0 0
2 1 −2 − 4λ 0 1 0 0 0
0 1 0 −1 0 1 0 0
1 0 1 0 −3 0 0 0
0 1 0 1 1 −2 1 0
0 0 0 0 1 1 −1 0
0 0 0 0 0 0 0 0




(80)

where our convention is A := (1
0

)
, and ∅ := (0

1

)
. It is easily seen that these reaction rates

satisfy (56), and so this system is a special case of the models considered here.
As another example consider the problem studied in [25]. There, a model similar to [23]

but with different reaction rates is studied, using the cluster mean field approximation. It can
be seen that, for example, λ4

6 �= λ4
2, and so this model cannot be solved using the empty interval

method, unless c/2 = d (in the notation of that paper), which is the same model considered
in [23].
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